

Environmental Monitoring for the Upper-Bound Radiation Dose Assessment Operation TOMODACHI Registry

Brief for: Veterans' Advisory Board on Dose Reconstruction March 23, 2012

Briefer: Steven E. Rademacher, Ph.D., CHP Air Force Safety Center, Weapons Safety Division

Acknowledgements

- Parties of the
- Dr. Daniel Blumenthal, National Nuclear Security Administration, who shared DOE's radiological monitoring results,
- Dr. FURUTA Sadaaki, Japan Atomic Energy Agency, who provided information on the Japanese radiological monitoring stations,
- Veterans' Advisory Board on Dose Reconstruction, Subcommittee No. 1 members (Harold Beck, Paul Voilleque, and Gary Zeman), who provided peer-review,

 Dr. David Kocher of SENES Oak Ridge, Inc., who provided peerreview, and

My co-authors: CDR Cassata, USN, Dr. Falo, LTJG Alleman, USN, LTC Rosser, USA, Mr. Dunavant, Dr. Case, & Dr. Blake.

Provide a brief summary of the environmental monitoring data used in determining Operation TOMODACHI upper-bound radiation doses for shorebased, DOD-affiliated population between 12 March and 11 May from four primary pathways.

Outline

- External Radiation Monitoring
- Air Monitoring
- Water Monitoring
- Soil Monitoring

- External dose measurements collected with portable instruments on US Forces Japan installations and Naval ships
- Numerous other measurements: Japan, US DOE
- Corroborate data to personal dosimetry measurements for individuals at specified locations

 Differences between Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and DOD/US DOE portable instrument measurements

(MEXT Station Closest to US Embassy/Yokota AB)

(MEXT Station Closest to Yokosuka NB/Camp Zama)

Date

(MEXT Station Closest to Misawa AB)

(MEXT Station Closest to Iwakuni MCAS)

A CONTOR OF MAR

- MEXT external dose rates measurements lower than DOD/US DOE portable instrument data
 - Differences not consistent among DARWG location/ closest MEXT station
 - DOD/US DOE to MEXT ranged by factor of 1.9 to 5.12
 - MEXT detector placement vs. DOD/US DOE measurement locations believed to be a primary factor
 - Some DOD/US DOE portable instrument biased-high at low exposure rates, another primary factor
 - One DOD/US DOE portable instrument subject to user introduced high bias at low exposure rates

External Radiation Monitoring Differences (Detector Location)

- AF Safety Center conducted portable instrument study with ADM-300 & Fluke Biomedical 451P
 - ADM-300 (2)-hour integrated

response ~ 2-fold higher than 451P

- Army Institute of Public Health confirmation
- 451P subject to

user bias at low exposure rates

- External dose rates DARWG Upper-Bound Doses
 - DOD/US DOE measurements used to adjust MEXT data
 - MEXT data vital for fine detail & early period dose rates

External Radiation Dose Rate (MEXT Data Adjustments)

Air Monitoring

- Conducted on multiple US Forces Japan Installations & US Naval ships
- Varied sampling equipment and methodology
 - Army: primarily Staplex high-flow rate for aerosols & Radēco medium flow rate sampling with in-line aerosol filter and charcoal canisters later
 - AF: Radēco medium flow rate sampling with in-line aerosol filter and charcoal canisters; high flow rate continuous monitoring at two locations (aerosols)
 - Navy: low volume air sampling on ships/installations; some later sampling with Radēco medium flow rate sampling systems

Air Sample Analysis

- Navy low volume samples
 - Portable instrument screening of filters
- Air Force
 - AF Radiation Assessment Team (AFRAT) highresolution γ-spectroscopy field
 - CONUS high-resolution γ-spectroscopy
- Army
 - Portable instrument pre-screen
 - CONUS high-resolution γ-spectroscopy
 - Correlation between two allowed inferences on subsequent pre-screened samples

- Inhalation Exposure Pathway
 - Projected source of dose to individuals
- Comparative analyses:
 - In-vivo bioassay measurements performed on ~ 8,000 individual vs. predicted uptakes
 - Due to conservative assumptions, predicted should be > bioassay, barring sensitivity issues
 - Modeled atmospheric release/transport to air sampling data

Air Monitoring Example

• Fixed air sampling site at Yokota AB

Air Sampling Example

	Start	Date =	16-Mar				Ba-1 4	10 (t _{1/2}	- 12.8 d)
	Start	Time =	1422Z				(1/2		
STATENT OF DES	Ston	Date =	17-Mar			β-			
	Stop	Time =	1422Z		V ľ				
	Sampling Time (hr) =		24			La-140 $(t_{1/2} - 40.8 d)$			
FILED STRONG OF AMERICA			Ground-Level Air Sample						
20123 01	Nuclida	Halflife	FIELD I	DETECTOR	LABO	RATORY			
AT OR	Nucliue	yr	$\mu Bq m^{-3}$	% Rel Err (1 σ)	µBq m ⁻³	% Rel Err (b)			
and the same the Te	Ba-136m	1.00E-08						Key Photon Emissions	
	Ba-140	0.035			3.08E+02	16.0		5	
2	Cs-134	2.05	1.40E+04	7.8	7.30E+03	1.1	Nuclide	Energy (keV) Frequ	Fraguanay
STATES OF AT	Cs-136	0.0375	3.44E+03	9.5	1.45E+03	1.7			riequency
	Cs-137	30.0	1.98E+04	8.2	7.45E+03	1.7		× ,	
INT OF	I-130	0.0014					Ba-140	163	0.06
STATE CO	I-131	0.022	7.59E+04	6.0	6.77E+04	1.1		305	0.06
	I-132	0.00026	6.33E+04	8.3	3.28E+04	1.1		505	0.00
	I-133	0.0023	1.66E+03	8.0				438	0.05
STATES OF	La-140	0.11	1.38E+03	15.0	3.55E+02	6.6		527	0.24
	Rb-86	0.051					ļ	337	0.34
TOP THE THE OF ORCE	Rh-102	2.9						329	0.20
	Ru-106	1.01						197	0.40
	Mo-99	0.0076			4.85E+02	21.0		40/	0.40
	Tc-99m	0.00069	1.005.04	10.5			La-140	815	0.19
	Te-129	0.000131	1.39E+04	10.5				022	0.10
	Te-129m	0.093	2.42E+04	37.0				923	0.10
	Te-131m	0.00005						1,596	0.96
	Te-132	0.0089	8.86E+04	6.5	3.77E+04	5.0	L	,	

Air Sampling Example

Air Sampling

- Limitations
 - High-flow rate sampling
 - Good sensitivity for multiple radionuclides
 - Inadequate in-itself for radioiodines due to potential for high gaseous-form content
 - Low-flow rate sampling
 - Allows aerosol/gas sampling in the same air sampling stream with filter/charcoal canister combination
 - Limited sensitivity for radionuclides other than Cs-134, Cs-137, and I-131

Air Sampling Example

Air Sampling Example

Water Monitoring

- SULPACE STORE
- Drinking water and surface water samples collected at US Forces Japan installations and by Japanese
- Drinking water radionuclide content predictive of intakes to individuals
 - Variables:
 - Multiple sources of drinking water
 - Differences in consumption volumes
- Expected to be a small contribution to individual doses

• Some USFJ installation had underground aquifer sources while others relied on municipal source

Water Monitoring

Measurement Date

Water Monitoring

• USAFSAM Analysis Results for DOD Samples

STMENT OF THE
AL
STATES OF A

Shore Location (DARWG	Samnling Dates	Number of	Maximum Concentration (Bq kg ⁻¹)				
Location Number)		Samples	I-131	Cs-134	Cs-137		
Misawa AB (D-1)	Mar 25 - Apr 28	33	< 0.28	< 0.013	< 0.013		
Yokota AB (D-8)	Mar 25 - Apr 11	20	0.086	< 0.12	0.073		
Yokosuka NB (D-11)	March 25 - May 2	96	8.2	0.32	0.31		
Camp Fuji (D-12) & Miscellaneous in Kanagawa Prefecture (D-11)	March 27 - May 2	19	< 15.2	< 0.40	< 0.39		
<" annotates less than minimal detectable activity value							

Soil Monitoring

- Surface soil sample collection on US Forces Japan installations
- Analysis
 - AFRAT high-resolution γ-spectroscopy field analysis of some samples
 - CONUS high-resolution $\gamma\mbox{-spectroscopy}$ at AIPH and USAFSAM
- Radionuclide content of soils indicative of deposition and some relation to previously existing airborne concentrations
- Much smaller sample number than air sampling and external exposure measurements

Soil Monitoring (Example: Camp Zama/Atsugi NAF)

Sampling Date	Activity Concentration (pCi g ⁻¹)					Notes	
Samping Dave	Cs-134 Cs-136		Cs-137 I-131		Te-132		
18-Mar	3.025		3.75	2.04		AFRAT Collected, Sagama Depot	
1-Apr	0.0407		0.0624	0.526	0.024	AFRAT Collected, Atsugi NAF	
11-Apr	0.21		0.27	1.43		AFRAT Collected, Atsugi NAF	
18-Apr	0.219		0.281	1.044		AFRAT Collected, Atsugi NAF	
18-Apr	2.4		2.87	1.47		AFRAT Collected, Sagama Depot	
18-Apr	0.953		0.9925	0.811		AFRAT Collected, Sagamihara	
18-Apr	3.29		3.87	2.51		AFRAT Collected, Sagama Depot	
18-Apr	1.14		1.18	0.92		AFRAT Collected, Sagamihara	
18-Apr	0.647		0.9385	0.593		AFRAT Collected at Sagamihara Housing Area	
18-Apr	1.07		1.25	1.075		AFRAT Collected at Camp Zama	
18-Apr	1.66		1.825	4.38		AFRAT Collected at Camp Zama (High Traffic Area)	
18-Apr	5.81	0.173	6.59	3.5		AFRAT Collected, Sagamihara	
18-Apr	1.345		1.495	1.47		AFRAT Collected, Sagamihara	
18-Apr	1.8		2.2	2.2		AIPH Collected, Camp Zama (High Elevation Area)	
18-Apr	0.39		0.51	0.74		AIPH Collected, Camp Zama (High Traffic Area)	
18-Apr	0.47		0.74	0.47		AIPH Collected, Camp Zama (Runoff Area)	
18-Apr	1.1		1.3	1.5		AIPH Collected, Sagama (High Elevation Area)	
18-Apr	0.71		1.4	0.43		AIPH Collected, Sagama (High Traffic Area)	
18-Apr	2.3		3.2	2.1		AIPH Collected, Sagama (Runoff Area)	
18-Apr	0.94		1.2	1.3		AIPH Collected, Sagamihara (High Elevation Area)	
18-Apr	1.4		1.7	1		AIPH Collected, Sagamihara (High Traffic Area)	
18-Apr	1.3		1.8	1.1		AIPH Collected, Sagamihara (Runoff Area)	

Soil Monitoring (Example: Atsugi NAF/Camp Zama)

Questions

